Description
给出一个 \(n \times n\) 的矩阵 \(B\) 和一个 \(1 \times n\) 的矩阵 \(C\). 求出一个 \(1 \times n\) 的 01 矩阵 \(A\), 使得 \(D = (A \times B - C) \times A^T\) 最大. 其中 \(A^T\) 为 \(A\) 的转置.
Input
第一行输入一个整数 \(n\), 接下来 \(n\) 行输入 \(B\) 矩阵, 第 \(i\) 行第 \(j\) 个数字代表 \(B_{i,j}\);
接下来一行输入 \(n\) 个整数, 代表矩阵 \(C\). 矩阵 \(B\) 和矩阵 \(C\) 中每个数字都是不 超过 \(1000\) 的非负整数.
Output
输出最大的 \(D\)
Sample Input
3
1 2 1
3 1 0
1 2 3
2 3 7
Sample Output
2
Data Range
\(1 \leq n \leq 500\)
Explanation
首先可以保证不会爆 long long;
然后按照黄学长的说法, 应该有:
\[\sum_{i=1}^n \sum_{j=1}^n B_{ij} \cdot A_i \cdot A_j – \sum_{i=1}^n A_i \cdot C_i\]
然后最小割一发就可以了.
此题应该高亮之后再看一看
Source Code
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <cstring>
using namespace std;
typedef long long lli;
const int maxN = 510, maxn = 300100, maxm = 2000100;
const int infinit = 0x0f7f7f7f;
class Dinic
{
public:
struct edge
{
int u, v, flow;
edge *next, *rev;
};
int n, s, t, ecnt;
edge *edges[maxn], epool[maxm];
int level[maxn];
void add_edge(int u, int v, int flow)
{
edge *p = &epool[++ecnt],
*q = &epool[++ecnt];
p->u = u; p->v = v; p->flow = flow;
p->next = edges[u]; edges[u] = p; p->rev = q;
q->u = v; q->v = u; q->flow = 0;
q->next = edges[v]; edges[v] = q; q->rev = p;
return ;
}
bool make_level(void)
{
memset(level, 0, sizeof(level));
queue<int> que;
que.push(s);
level[s] = 1;
while (!que.empty()) {
int p = que.front();
que.pop();
for (edge *ep = edges[p]; ep; ep = ep->next)
if (ep->flow && !level[ep->v]) {
level[ep->v] = level[p] + 1;
que.push(ep->v);
}
}
if (level[t] > 0)
return true;
return false;
}
int dfs(int p, int mn)
{
if (p == t)
return mn;
int sum = 0, tmp;
for (edge *ep = edges[p]; ep && sum < mn; ep = ep->next)
if (ep->flow && level[ep->v] == level[p] + 1) {
tmp = dfs(ep->v, min(mn - sum, ep->flow));
if (tmp > 0) {
sum += tmp;
ep->flow -= tmp;
ep->rev->flow += tmp;
}
}
return sum;
}
int eval(void)
{
int sum = 0, tmp;
while (make_level()) {
tmp = dfs(s, infinit);
if (tmp <= 0)
break;
sum += tmp;
}
return sum;
}
} graph;
int n;
int main(int argc, char** argv)
{
scanf("%d", &n);
graph.n = n + n*n + 2;
graph.s = n + n*n + 1;
graph.t = graph.n;
int cnt = n;
int sum = 0;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) {
int x; scanf("%d", &x);
cnt += 1;
graph.add_edge(i, cnt, infinit);
graph.add_edge(j, cnt, infinit);
graph.add_edge(cnt, graph.t, x);
sum += x;
}
for (int i = 1; i <= n; i++) {
int x; scanf("%d", &x);
graph.add_edge(graph.s, i, x);
}
sum -= graph.eval();
printf("%d\n", sum);
return 0;
}