Description
神校 XJ 之学霸兮, Dzy 皇考曰 JC.
摄提贞于孟陬兮, 惟庚寅 Dzy 以降.
纷 Dzy 既有此内美兮, 又重之以修能.
遂降临于 OI 界, 欲以神力而凌♂辱众生.
今 Dzy 有一魞歄图, 其上有 \(n\) 座祭坛, 又有 \(m\) 条膴蠁边.
时而 Dzy 狂 WA 而怒发冲冠, 神力外溢, 遂有 \(k\) 条膴蠁边灰飞烟灭.
而后俟其日 A50 题则又令其复原. (可视为立即复原)
然若有祭坛无法相互到达, Dzy 之神力便会大减, 于是欲知其是否连通.
Input
第一行 \(n, m\)
接下来 \(m\) 行 \(x, y\): 表示 \(m\) 条膴蠁边, 依次编号
接下来一行 \(Q\)
接下来 \(Q\) 行:
每行第一个数 \(k\) 而后 \(k\) 个编号 \(c_1 \sim c_k\): 表示 \(k\) 条边, 编号为 \(c_1 \sim c_k\)
为了体现在线,\(k\) 以及 \(c_1 \sim c_k\) 均需异或之前回答为连通的个数
Output
对于每个询问输出: 连通则为 “Connected”, 不连通则为 “Disconnected” (不加引号).
Sample Input
5 10
2 1
3 2
4 2
5 1
5 3
4 1
4 3
5 2
3 1
5 4
5
1 1
2 7 0 3
6 0 7 4 6
1 2 7
0 5 0 2 13
Sample Output
Connected
Connected
Connected
Connected
Disconnected
Data Range
对于所有数据, 满足:\(n \leq 10^5, m \leq 5 \times 10^5, Q \leq 50000, 1 \leq k \leq 15\), 并且: 数据保证没有重边与自环.
Explanation
此题做法同 bzoj3569, 请出门右转上一题题解.
Source Code
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long lli;
const int maxn = 500100, maxm = 500100;
class IDontKnowWhatThisDoes
{
public:
struct edge
{
int u, v, rnd;
edge *next;
};
int n, root, ecnt;
edge *edges[maxn], epool[maxm];
void add_edge(int u, int v)
{
edge *p = &epool[++ecnt];
p->u = u; p->v = v;
p->next = edges[u]; edges[u] = p;
return ;
}
bool vis[maxn];
int b[maxn];
void dfs1(int p)
{
vis[p] = true;
for (edge *ep = edges[p]; ep; ep = ep->next)
if (!vis[ep->v]) {
dfs1(ep->v);
} else {
ep->rnd = rand();
b[p] ^= ep->rnd;
b[ep->v] ^= ep->rnd;
}
return ;
}
void dfs2(int p)
{
vis[p] = true;
for (edge *ep = edges[p]; ep; ep = ep->next)
if (!vis[ep->v]) {
dfs2(ep->v);
ep->rnd ^= b[ep->v];
b[p] ^= b[ep->v];
}
return ;
}
void construct(void)
{
root = 1;
memset(vis, 0, sizeof(vis));
dfs1(root);
memset(vis, 0, sizeof(vis));
dfs2(root);
return ;
}
// Here goes the checking
int c[64];
bool judge(int k)
{
int now = 0;
for (int i = 1 << 30; i; i >>= 1) {
int j = now + 1;
for (; j <= k; j++)
if (c[j] & i)
break;
if (j == k + 1)
continue;
swap(c[j], c[++now]);
for (int j = 1; j <= k; j++)
if (j != now && c[j] & i)
c[j] ^= c[now];
}
if (c[k])
return false;
return true;
}
} graph;
int n, m, T;
int main(int argc, char** argv)
{
srand(19990610);
scanf("%d%d", &n, &m);
for (int i = 1, a, b; i <= m; i++) {
scanf("%d%d", &a, &b);
if (a > b) swap(a, b);
graph.add_edge(a, b);
}
scanf("%d", &T);
graph.construct();
int res = 0;
for (int idx = 1, k; idx <= T; idx++) {
scanf("%d", &k);
k ^= res;
for (int i = 1, x; i <= k; i++) {
scanf("%d", &x);
x ^= res;
graph.c[i] = graph.epool[x].rnd;
}
if (graph.judge(k)) {
printf("Disconnected\n");
} else {
res += 1;
printf("Connected\n");
}
}
return 0;
}